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Abstract—The problem of unsteady, laminar double-diffusive convective flow of a binary gas mixture in an inclined rectangular
enclosure filled with a uniform porous medium is considered. Transverse gradients of heat and mass are applied on two opposing
walls of the enclosure while the other two walls are adiabatic and impermeable to mass transfer. A numerical solution based on the
finite-difference methodology is obtained. In the absence of the porous medium, an oscillatory flow behavior within the enclosure
is predicted for a buoyancy ratio of unity. In the presence of the porous medium, however, a decay in the oscillatory behavior is
observed. Representative results illustrating the effects of the inverse Darcy number and the enclosure tilting or inclination angle on
the contours of streamline, temperature, concentration and density as well as the profiles of velocity, temperature and concentration
at mid section of the enclosure are reported. In addition, results for the average Nusselt and Sherwood numbers are presented and
discussed for various parametric conditions. In this study, the thermal and the compositional buoyancy forces are assumed to be
opposite.  2001 Éditions scientifiques et médicales Elsevier SAS

laminar flow / double-diffusive convection / unsteady flow / porous medium / inclined enclosure / numerical analysis /
buoyancy

Nomenclature

A enclosure aspect ratio =H/W
c concentration of species
ch high species concentration (source)
cl low species concentration (sink)
C dimensionless species concentration

= (c− cl)/(ch − cl)− 0.5

D species diffusivity . . . . . . . . . . . . m2·s−1

Da∗ Darcy number =W2/κ

g gravitational acceleration . . . . . . . . m·s−2

H enclosure height . . . . . . . . . . . . . m
Le Lewis number = αe/D

N buoyancy ratio
= βc(ch − cl)/[βT (Th − Tc)]

Nu average Nusselt number
p fluid pressure . . . . . . . . . . . . . . . Pa
Pr Prandtl number = ν/αe

* Correspondence and reprints.
E-mail address: chamkha@kuc01.kuniv.edu.kw (A.J. Chamkha).

RaT thermal Rayleigh number
= gβT (Th − Tc)W

3/(αeν)

Sh average Sherwood number
t time . . . . . . . . . . . . . . . . . . . . s
to period of oscillation . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . K
Th hot wall temperature (source) . . . . . . K
Tc cold wall temperature (sink) . . . . . . . K
u transverse velocity component . . . . . m·s−1

U dimensionless transverse velocity compo-
nent = uW/αe

v normal velocity component . . . . . . . m·s−1

V dimensionless normal velocity component
= vW/αe

W enclosure width . . . . . . . . . . . . . . m
x transverse coordinate . . . . . . . . . . . m
X dimensionless transverse coordinate

= x/W
y normal coordinate . . . . . . . . . . . . m
Y dimensionless normal coordinate = y/W
Greek symbols

α rectangular enclosure angle
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αe effective thermal diffusivity of the porous
medium . . . . . . . . . . . . . . . . . . m2·s−1

βT thermal expansion coefficient . . . . . . K−1

βc compositional expansion coefficient
κ permeability of the porous medium . . . m2

µ dynamic viscosity . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity = µ/ρ . . . . . . . m2·s−1

θ dimensionless temperature
= (T − Tc)/(Th − Tc)− 0.5

ρ density . . . . . . . . . . . . . . . . . . kg·m−3

ρ∗ dimensionless density =NC − θ
τ dimensionless time = αet/W

2

τo dimensionless period of oscillation
= αeto/W

2

Ω vorticity . . . . . . . . . . . . . . . . . . s−1

ψ dimensionless stream function = Ψ/αe

Ψ stream function . . . . . . . . . . . . . . m2·s−1

ζ dimensionless vorticity =ΩW2/αe

∇2 Laplacian operator

1. INTRODUCTION

Fluid flows generated by combined temperature and
concentration gradients are referred to as double-diffusive
convection. The cases of cooperating thermal and con-
centration buoyancy forces where both forces act in the
same direction and opposing thermal and concentration
buoyancy forces where both forces act in opposite direc-
tions have been considered in the literature. Double dif-
fusion occurs in a wide range of scientific fields such as
oceanography, astrophysics, geology, biology and chem-
ical processes (see, for instance, Beghein et al. [1]). Os-
trach [2] and Viskanta et al. [3] have reported com-
plete reviews on the subject. Bejan [4] has reported
a fundamental study of scale analysis relative to heat
and mass transfer within cavities submitted to horizontal
combined and pure temperature and concentration gra-
dients. Kamotani et al. [5] have considered an experi-
mental study of natural convection in shallow enclosures
with horizontal temperature and concentration gradients.
Other experimental studies dealing with thermo-solutal
or double-diffusive convection in rectangular enclosures
were reported by Ostrach et al. [6] and Lee et al. [7]. Lee
and Hyun [8] and Hyun and Lee [9] have reported nu-
merical solutions for unsteady double-diffusive convec-
tion in a rectangular enclosure with aiding and oppos-
ing temperature and concentration gradients which were
in good agreement with reported experimental results.
Mamou et al. [10] have reported an analytical and nu-
merical study of double-diffusive convection in a vertical

enclosure. Mamou and Vasseur [11] have discussed hys-
teresis effect on thermosolutal convection with opposed
buoyancy forces in inclined enclosures. Other related
numerical studies dealing with double-diffusive natural
convection in cavities were considered by Ranganathan
and Viskanta [12], Trevisan and Bejan [13], Beghein et
al. [1] and Nishimura et al. [14].

Thermal buoyancy-induced flow and heat transfer in-
side a porous medium has been studied extensively in the
literature. This is due to its relevance in many natural
and industrial processes. This flow situation is induced
by a single buoyancy force caused by temperature gradi-
ents. Recently, interest for study and analysis of double-
diffusive convective flows induced by the combined ac-
tion of both temperature and concentration gradients has
surged in view of its importance in many engineering
problems such as migration of moisture contained in fi-
brous insulation, grain storage, the transport of contami-
nants in saturated oil, the underground disposal of nuclear
wastes and drying processes (Mamou et al. [15]). Chen
and Chen [16] have considered double-diffusive finger-
ing convection in a porous medium. Trevisan and Be-
jan [17] have studied heat and mass transfer by natural
convection in a vertical slot filled with a porous medium.
Alavyoon [18] has reported on natural convection in ver-
tical porous enclosures due to prescribed fluxes of heat
and mass at the vertical boundaries. Mamou et al. [19]
have analyzed double-diffusion convection in an inclined
slot filled with a porous medium. Lin [20] has studied un-
steady natural convection heat and mass transfer in a sat-
urated porous medium. Alavyoon and Masuda [21] have
considered natural convection in vertical porous enclo-
sures with opposing fluxes of heat and mass prescribed at
the vertical walls. Mamou et al. [15] have studied the on-
set of double-diffusive convection in an inclined porous
enclosure. In their study, Mamou et al. [15] have dealt
with a particular situation where the buoyancy forces in-
duced by the thermal and solutal effects were opposing
and of equal intensity. The objective of their study was
to investigate the critical stability of their system in terms
of the inclination angle, aspect ratio and the Lewis num-
ber. Double-diffusive convection instability in a vertical
porous enclosure has also been analyzed by Mamou et
al. [22]. Amahmid et al. [23] have considered boundary
layer flows in a vertical porous enclosure induced by op-
posing forces. More recently, Bennacer et al. [24] have
reported on the Brinkman model for thermosolutal con-
vection in a vertical annular porous layer.

In this study, the problem of unsteady, laminar, double-
diffusive natural convection flow inside an inclined rec-
tangular enclosure filled with a uniform porous medium
with opposing temperature and concentration gradients is
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considered for an aspect ratio of 2. This problem repre-
sents a direct generalization of the work of Nishimura et
al. [14] to include enclosure tilting and porous medium
effects and a generalization of the work of Mamou et
al. [15] to allow for unequal thermal and concentra-
tion buoyancy forces. This type of flow and heat trans-
fer situation finds application in many engineering and
technological areas such as geothermal reservoirs, pe-
troleum extraction, chemical catalytic reactors, preven-
tion of sub-soil water pollution, nuclear reactors, under-
ground diffusion of nuclear wastes and other contam-
inants, and porous material regenerative heat exchang-
ers.

2. MATHEMATICAL MODEL

Consider unsteady laminar two-dimensional double-
diffusive convective flow inside a tilted fluid-saturated
porous medium-filled rectangular enclosure. The temper-
atures Th and Tc and concentrations ch and cl are uni-
formly imposed on two opposing walls while the other
walls are assumed adiabatic and impermeable to mass
transfer. The wall at Th and ch is the source where
the mixture diffuses to the opposing wall (sink). The
schematic of the system under consideration is shown in
figure 1. The fluid is assumed to be incompressible, New-
tonian, and viscous. The viscous dissipation is assumed

Figure 1. Schematic diagram of tilted porous medium filled
enclosure.

to be negligible. The Boussinesq approximation with
opposite thermal and compositional buoyancy forces is
used for the body force terms in the momentum equa-
tions.

The governing equations for the problem under con-
sideration are based on the balance laws of mass, linear
momentum, thermal energy, and concentration in two di-
mensions modified to include the Darcian effects of the
porous medium. This model is named in the literature as
the Darcy–Brinkman model. It is only applicable to slow
flows within the enclosure as is typical of many processes
such as grain storage and others. Taking into account
the assumptions mentioned above, these equations can be
written in dimensional form as

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂t
+ u ∂u

∂x
+ v ∂u

∂y

= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
− gβT (T − Tc) sinα

+ gβc(c− cl) sinα − µ

ρκ
u (2)

∂v

∂t
+ u ∂v

∂x
+ v ∂v

∂y

= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
− gβT (T − Tc) cosα

+ gβc(c− cl) cosα − µ

ρκ
v (3)

∂T

∂t
+ u ∂T

∂x
+ v ∂T

∂y
= αe

(
∂2T

∂x2 + ∂2T

∂y2

)
(4)

∂c

∂t
+ u ∂c

∂x
+ v ∂c

∂y
=D

(
∂2c

∂x2
+ ∂2c

∂y2

)
(5)

where x , y and t are the transverse and normal distances
(as shown on figure 1) and time, respectively. u, v, p,
T and c are the velocity components in the x and y
directions, pressure, temperature and concentration, re-
spectively. βT and βc are the thermal and compositional
expansion coefficients, respectively. α is the enclosure
angle. κ , αe, ν, µ, cp , and ρ are the permeability and
effective thermal diffusivity of the porous medium, the
fluid kinematic and dynamic viscosities, specific heat
at constant pressure and the fluid density, respectively.
D is the species diffusivity, Th and Tc are the hot and
cold wall temperature, ch and cl are the concentration at
the hot and cold walls, g is the gravitational accelera-
tion.
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The boundary conditions for the problem can be
written as

x = 0, y = y: u= 0, v = 0, T = Th, c= ch

x =W, y = y: u= 0, v = 0, T = Tc, c= cl

x = x, y = 0: u= 0, v = 0,
∂T

∂y
= 0,

∂c

∂y
= 0

x = x, y =H : u= 0, v = 0,
∂T

∂y
= 0,

∂c

∂y
= 0

(6)

whereW andH are the width and height of the enclosure,
respectively.

The dimensional stream function and vorticity can be
defined in the usual way as

u= ∂Ψ

∂y
, v = −∂Ψ

∂x
, Ω = −

(
∂2Ψ

∂x2 + ∂2Ψ

∂y2

)

(7)

Equations (1)–(7) are nondimensionalized using the
following dimensionless variables:

ζ = ΩW
2

αe
, ψ = Ψ

αe
, θ = (T − Tc)

(Th − Tc)
− 0.5

C = (c− cl)

(ch − cl)
− 0.5, X = x

W

Y = y

W
, τ = αet

W 2
, Pr = ν

αe

Da∗ = W
2

κ
, N = βc(ch − cl)

βT (Th − Tc)

Le = αe

D
, RaT = gβT (Th − Tc)W

3

αeν

(8)

The meaning of the dimensionless parameters appearing
in the above equations is given in the nomenclature list.

By employing equations (8) and combining equa-
tions (2) and (3) by eliminating the pressure gradient
terms, the resulting dimensionless equations can be writ-
ten as

ζ = ∂V

∂X
− ∂U

∂Y
= −∇2ψ (9)

∂ζ

∂τ
+U ∂ζ

∂X
+ V ∂ζ

∂Y

= Pr∇2ζ + RaT Pr cosα

(
− ∂θ

∂X
+N ∂C

∂X

)

+ RaT Pr sinα

(
∂θ

∂Y
−N ∂C

∂Y

)
− Da∗ Prζ (10)

∂θ

∂τ
+U ∂θ

∂X
+ V ∂θ

∂Y
= ∇2θ (11)

∂C

∂τ
+U ∂C

∂X
+ V ∂C

∂Y
= ∇2C

Le
(12)

The dimensionless boundary conditions become

• Y = 0:

U = V =ψ = 0, ζ = −
(

∂2ψ

∂Y 2

)

∂θ

∂Y
= 0,

∂C

∂Y
= 0

(13a)

• Y =H/W :

U = V =ψ = 0, ζ = −
(

∂2ψ

∂Y 2

)

∂θ

∂Y
= 0,

∂C

∂Y
= 0

(13b)

• X = 0:

U = V =ψ = 0, ζ = −
(

∂2ψ

∂X2

)

θ = 0.5, C = 0.5

(13c)

• X = 1:

U = V =ψ = 0, ζ = −
(

∂2ψ

∂X2

)

θ = −0.5, C = −0.5
(13d)

The average Nusselt and Sherwood numbers at the
source boundary of the enclosure are given by

Nu = −
∫ 2

0

∂θ

∂X
dY (14)

Sh = −
∫ 2

0

∂C

∂X
dY (15)

Computations were performed numerically to solve
equations (9)–(13) using a 300 MHz PC with the Fortran
language. The finite-difference approximation from Tay-
lor series is used to solve the partial differential dimen-
sionless equations with an enclosure aspect ratio of 2. In
all the results obtained Pr = 1.0, Le = 2.0 and RaT = 105

were used as reference values so as to allow for com-
parisons with the work of Nishimura et al. [14]. A com-
putational domain consisting of 31 × 41 grid points was
used. The details for the numerical algorithm are given
below.

3. NUMERICAL ALGORITHM

The numerical algorithm used to solve equations (9)–
(13) is based on the finite-difference methodology. First,
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the central difference is used to approximate the second
derivatives and then it is transformed to the implicit line
tridiagonal equations and solved in the x direction for
the concentration, temperature, vorticity and the stream
function. This method was stable and gave results that are
very close to the numerical results obtained by Nishimura
et al. [14] using the finite-element method.

The finite-difference formulation of equation (9) is

ζ = −[ψn+1
i+1,j − 2ψn+1

i,j +ψn+1
i−1,j ]

(X2

− [ψni,j+1 − 2ψn+1
i,j +ψni,j−1]
(Y 2 (16a)

which can be rearranged as

ψn+1
i−1,j [E1] +ψn+1

i,j [B1] +ψn+1
i+1,j [A1] = [D1] (16b)

where

E1 = [
(Y 2]

B1 = [−2(Y 2 − 2(X2]
(16c)

A1 = [
(Y 2]

D1 = −ζi,j(X2(Y 2 −(X2[ψni,j+1 +ψni,j−1

]
The finite-difference formulation for equation (10) will
have the form

[ζ n+1
i,j − ζ ni,j ]
(τ

+Ui,j
[ζ n+1
i+1,j − ζ n+1

i−1,j ]
2(X

+ Vi,j
[ζ ni,j+1 − ζ ni,j−1]

2(Y

= Pr

{ [ζ n+1
i+1,j − 2ζ n+1

i,j + ζ n+1
i−1,j ]

(X2

+ [ζ ni,j+1 − 2ζ n+1
i,j + ζ ni,j−1]
(Y 2

}

+ RaT Pr cosα

{
−[θi+1,j − θi−1,j ]

2(X

+N [Ci+1,j −Ci−1,j ]
2(X

}

+ RaT Pr sinα

{
−[θi,j+1 − θi,j−1]

2(Y

−N [Ci,j+1 −Ci,j−1]
2(Y

}

− Da∗ Pr ζ n+1
i,j (17a)

which can be rearranged as

ζ n+1
i−1,j [E1] + ζ n+1

i,j [B1] + ζ n+1
i+1,j [A1] = [D1] (17b)

where

E1 =
[
−Ui,j(τ

2(X
− Pr(τ

(X2

]

B1 =
[

1.0 + 2Pr(τ

(X2 + 2Pr(τ

(Y 2 +(τ Da∗ Pr

]

A1 =
[
Ui,j(τ

2(X
− Pr(τ

(X2

]

D1 = ζ ni,j+1

[
−Vi,j(τ

2(Y
+ Pr(τ

(Y 2

]

+ ζ ni,j [1.0] + ζ ni,j−1

[
Vi,j(τ

2(Y
+ Pr(τ

(Y 2

]

+ RaT Pr(τ cosα

{
−[θi+1,j − θi−1,j ]

2(X

+N [Ci+1,j −Ci−1,j ]
2(X

}

+ RaT Pr(τ sinα

{
−[θi,j+1 − θi,j−1]

2(Y

−N [Ci,j+1 −Ci,j−1]
2(Y

}
(17c)

The finite-difference formulation for equation (11)
will be written as

[θn+1
i,j − θni,j ]
(τ

+Ui,j
[θn+1
i+1,j − θn+1

i−1,j ]
2(X

+ Vi,j
[θni,j+1 − θni,j−1]

2(Y

=
{ [θn+1

i+1,j − 2θn+1
i,j + θn+1

i−1,j ]
(X2

+[θni,j+1 − 2θni,j + θni,j−1]
(Y 2

}
(18a)

which can be rearranged as

θn+1
i−1,j [E1] + θn+1

i,j [B1] + θn+1
i+1,j [A1] = [D1] (18b)

where

E1 =
[
−Ui,j(τ

2(X
− (τ

(X2

]

B1 =
[

1.0 + 2(τ

(X2

]
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A1 =
[
Ui,j(τ

2(X
− (τ

(X2

]

D1 = θni,j+1

[
−Vi,j(τ

2(Y
+ (τ

(Y 2

]
+ θni,j

[
1.0 − 2(τ

(Y 2

]

+ θni,j−1

[
Vi,j(τ

2(Y
+ (τ

(Y 2

]
(18c)

The finite-difference formulation for equation (12) can
be written as

[Cn+1
i,j −Cni,j ]
(τ

+Ui,j
[Cn+1
i+1,j −Cn+1

i−1,j ]
2(X

+ Vi,j
[Cni,j+1 −Cni,j−1]

2(Y

= 1

Le

{ [Cn+1
i+1,j − 2Cn+1

i,j +Cn+1
i−1,j ]

(X2

+ [Cni,j+1 − 2Cni,j +Cni,j−1]
(Y 2

}
(19a)

which can be rearranged as

Cn+1
i−1,j [E1] +Cn+1

i,j [B1] +Cn+1
i+1,j [A1] = [D1] (19b)

where

E1 =
[
−Ui,j(τ

2(X
− (τ

Le(X2

]

B1 =
[

1.0 + 2(τ

Le(X2

]

A1 =
[
Ui,j(τ

2(X
− (τ

Le(X2

]
(19c)

D1 = Cni,j+1

[
−Vi,j(τ

2(Y
+ (τ

Le(Y 2

]

+Cni,j
[

1.0 − 2(τ

Le(Y 2

]

+Cni,j−1

[
Vi,j(τ

2(Y
+ (τ

Le(Y 2

]

U and V can be determined explicitly from

Un+1
i,j = [ψi,j+1 −ψi,j−1]

2(Y
(20)

V n+1
i,j = −[ψi+1,j −ψi−1,j ]

2(X

The finite-difference formulation for the boundary
condition (13) is:

• Y = 0:

ζ = −
(

∂2ψ

∂Y 2

)

⇒ ζ n+1
i,1 = −[2ψni,1 − 5ψni,2 + 4ψni,3 −ψni,4]

(Y 2 (21)

∂θ

∂Y
= 0 ⇒ θn+1

i,1 = [4θni,2 − θni,3]
3.0

(22)

∂C

∂Y
= 0 ⇒ Cn+1

i,1 = [4Cni,2 −Cni,3]
3.0

(23)

• Y =H/W :

ζ = −
(

∂2ψ

∂Y 2

)

⇒ ζ n+1
i,jmax

= −[−ψni,jmax−3 + 4ψni,jmax−2

− 5ψni,jmax−1 + 2ψni,jmax

]
/(Y 2 (24)

∂θ

∂Y
= 0 ⇒ θn+1

i,jmax
= [4θni,jmax−1 − θni,jmax−2]

3.0
(25)

∂C

∂Y
= 0 ⇒ Cn+1

i,jmax
= [4Cni,jmax−1 −Cni,jmax−2]

3.0
(26)

• X = 0:

ζ = −
(

∂2ψ

∂X2

)
⇒ ζ n+1

1,j = 2
[ψn1,j −ψn2,j ]

(X2
(27)

θn+1
1,j = 0.5, Cn+1

1,j = 0.5 (28)

• X = 1:

ζ = −
(

∂2ψ

∂X2

)
⇒ ζ n+1

imax,j
= 2

[ψnimax,j
−ψnimax−1,j ]
(X2

(29)

θn+1
imax,j

= −0.5, Cn+1
imax,j

= −0.5 (30)

The subscripts i and j denote the X and Y location.
The superscripts n and n + 1 denote the time step,
respectively. The numerical computations are carried out
for 31 × 41 grid nodal points for a time step of 10−5,
(X = 1/30 and (Y = 1/20. The convergence criterion
required that the difference between the current and
previous iterations for all of the dependent variables be
10−4.

4. SOLUTION PROCEDURE

1. All dependent variables are initialized to zero.

2. The new boundary condition values at (n+ 1) are
calculated for all walls from the previous values at (n).
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3. The new concentration values at (n+ 1) are calcu-
lated from the previous (n) values, and then a subroutine
is called to solve the obtained tridiagonal equations for
all the concentration values at all the internal grid points.

4. The temperature, vorticity, and the stream function
are calculated in the same way as in step (3), respectively.

5. The velocity components U and V are calculated
at (n+ 1) from the values at (n) explicitly for all the in-
ternal grid points.

6. The error is calculated for the concentration, the
temperature, and the vorticity at the last time step (only
for steady solution).

7. To obtain the solution at the next time step at
(n+ 2), the same procedure is followed by starting with
step (2).

This procedure is for unsteady solution. If the steady
solution is required, then the concentration and the tem-
perature are only needed to be updated for a number of
internal loops for each single time step. Then, at the end
of this single time step, the vorticity, the stream function,
and the velocity components (U and V ) need to be up-
dated.

8. The average Nusselt and Sherwood numbers are
then calculated at the source wall.

(a) (b)

Figure 2. (a) Steady thermal-dominated solution for N = 0.8, Da = 0.0, α = 0.0. (b) Steady compositional-dominated solution for
N = 1.3, Da = 0.0, α = 0.0.
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5. NUMERICAL VALIDATION TESTS

In order to check the accuracy of the numerical
method employed for the solution of the problem un-
der consideration, it was validated against the problem of
double-diffusive convective flow in a vertical rectangu-
lar enclosure with combined horizontal temperature and
concentration gradients reported earlier by Nishimura et
al. [14]. Figure 2 presents comparison for the stream-
lines, isotherms, concentration contours and density con-
tours of the present work at N = 0.8 (thermal-dominated
flow) and N = 1.3 (compositional-dominated flow) with
those of Nishimura et al. [14]. This comparison shows
good agreement between the results. Figure 3 illustrates
the oscillatory behavior in |ψmax| and |ψmin| with time
predicted by Nishimura et al. [14]. The period of oscilla-

Figure 3. Oscillatory behavior of |ψmin| and |ψmax| with time for
N = 1.0, Da∗ = 0.0, α = 0◦.

tion τo was found to be 0.05091. Also, figures 4a–d cor-
responding to points a–d in figure 3, respectively, pre-
dict the oscillatory behavior with time in the thermal
and compositional recirculations at N = 1.0 through the
streamline, temperature, concentration and density con-
tours which compare well with the results reported by
Nishimura et al. [14]. Moreover, table I shows a favor-
able comparison between numerical results for a period
of oscillation and stream function extrema |ψmax| and
|ψmin| at N = 1.0 obtained by three different numerical
schemes, the finite-element method, spectral method (re-
ported by Nishimura et al. [14]) and the finite-difference
method of the present work. These various comparisons
lend confidence in the numerical results to be reported
subsequently.

6. RESULTS AND DISCUSSION

In this section, numerical results for the streamline,
temperature, concentration and density contours as well
as selected velocity, temperature and concentration pro-
files at mid-section of the enclosure for various values of
the enclosure inclination angle α and inverse Darcy num-
ber Da∗ will be reported. In addition, representative re-
sults for the average Nusselt number Nu and the average
Sherwood number Sh at various conditions will be pre-
sented and discussed. In all of these results, Le, Pr, and
RaT were fixed at the values of 2.0, 1.0 and 105, respec-
tively.

Figure 5 presents steady-state contours for the stream-
line, temperature, concentration, and density at various
values of the enclosure inclination angle α for Da∗ = 0.0
and N = 0.8. As mentioned by Nishimura et al. [14],
whenN < 1.0 the flow is primarily dominated by thermal
buoyancy effects while for N > 1.0 the flow is mainly
dominated by compositional buoyancy effects. The in-
teraction between the thermal and compositional buoy-

TABLE I
Comparison between the present method and two numerical methods for

N = 1.0.

Finite element method Spectral method Finite difference method
(31 × 41 points) (40 × 80 points) (31 × 41 points)

[14] [25] Present results
τo 0.0497 0.0494 0.05091
Max |ψmax| 26.7 26.8 27.8
Min |ψmax| 12.9 12.7 13.7
Max |ψmin| 5.76 5.52 5.85
Min |ψmin| 0.351 0.333 0.333
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(a) (b)

Figure 4. Temperature, concentration, density and streamline contours during a period of oscillation (a) for N = 1.0, Da = 0.0, α = 0.0.
(b) for N = 1.0, Da = 0.0, α = 0.0. Temperature, concentration, density and streamline contours during a period of oscillation (c) for
N = 1.0, Da = 0.0, α = 0.0. (d) for N = 1.0, Da = 0.0, α = 0.0.

ancy effects is small except for values ofN close to unity.
Therefore, for N = 0.8, the thermal buoyancy dominates
and a large clockwise thermal recirculation is predicted
with the isotherms not being horizontally uniform in the
core region within the enclosure. Furthermore, the con-
centration contours are distorted in the core of the en-

closure while the density contours indicate a stable strat-
ification in the vertical direction except near the insu-
lated walls of the enclosure. As the enclosure is tilted,
the streamline contours are distorted with the maximum
value of the stream function occurring for α = 0◦ which
indicates a faster clockwise thermal recirculation than
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(c) (d)

Figure 4 (continued).

that of a higher inclination angle. The temperature and
density contours become more horizontally uniform in
the core region within the enclosure for α = 30◦. In addi-
tion, the concentration contours become less distorted as
α increases.

Figure 6 displays similar results as shown in figure 5
except for N = 1.3. As mentioned before, for this spe-

cific value of N , the flow is dominated by compositional
buoyancy effects. For α = 0◦ a counter-clockwise com-
positional recirculation exists in the core region of the en-
closure along with two clockwise thermal recirculations
occurring near the top right and bottom left corners of
the enclosure. The contours for temperature and concen-
tration are almost parallel to each other within the cen-
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Figure 5. Steady thermal-dominated solution for Da∗ = 0.0, Le = 2.0, N = 0.8, Pr = 1.0, and RaT = 105.
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Figure 6. Steady compositional-dominated solution for Da∗ = 0.0, Le = 2.0, N = 0.8, Pr = 1.0, and RaT = 105.
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ter of the enclosure away from the walls which produces
a more horizontally uniform density contours which are
stably stratified in the vertical direction. However, as the
inclination angle α increases further and further, the two
thermal recirculations at the corners diminish while the
compositional recirculation dominates and moves slower
in the core region of the enclosure. Also, the tempera-
ture and concentration contours become less parallel to
each other within the core, and thus, the density contours
become less horizontally uniform. In this case, the den-
sity remains stably stratified in the vertical direction. An
inspection of the maximum value of the stream function
for α = 0◦, 30◦, and 60◦ reveals that it is the highest for
α = 0◦ and decreases as α increases. This indicates that
the flow behavior is fastest at α = 0◦ and becomes slower
as α increases.

Figure 7 depicts the effects of the inverse Darcy
number Da∗ on the flow, thermal and compositional
patterns within the enclosure through the streamline,
temperature, concentration and density contours for a
buoyancy ratio N = 0.8. The presence of the porous
medium is observed to cause the streamlines to be
distorted with the formation of a smaller thermal and
slower clockwise recirculation in the core region. The
temperature and concentration contours tend to become
more similar except in the core region as Da∗ increases
causing the density contours to become less horizontally
uniform in the core region away from the walls of the
enclosure. A main contribution of the presence of the
porous medium for this buoyancy ratio is seen to provide
flow resistance and to suppress the overall heat transfer
in the enclosure.

In figure 8, similar results as those shown in figure 7
are displayed for N = 1.3 (compositional-dominated
flow). Similar trends in the flow patterns are predicted
where the two clockwise thermal recirculations and the
compositional recirculation are slowed down by the
presence of the porous medium. The temperature and
concentration contours appear to look more similar while
the density contours become more horizontally uniform
in the core region as Da∗ increases.

Representative profiles at mid-section of the enclosure
for the X-component of velocity U , Y -component of
velocity V , temperature θ , and concentration C for
various values of α and Da∗ for N = 0.8 were obtained
but not presented herein for brevity. It was predicted from
these results that as α was increased from 0 to 30◦ and
then to 60◦, all of V , θ , and C increased in the vicinity of
the hot wall while U increased reaching a maximum for
α = 30◦ and then decreased for α = 60◦. This is believed
to be associated with the oscillatory behavior inherent in

the problem as was observed from the curve associated
with α = 0◦.

A very similar behavior as that of α was observed for
all profiles where V , θ , and C near the hot wall increased
with increasing values of Da∗ (Da∗ = 0, 100, 200, 300,
500) while U increased reaching a maximum for Da∗ =
100 and then decreased for values of Da∗ > 100. The
oscillatory behavior of U for Da∗ = 0 was predicted to
disappear as Da∗ was increased.

Another typical set of profiles for U , V , θ , and C
for various values of α and Da∗ at mid-section of the
enclosure for N = 1.3 was also obtained. In many of
these results, the exact opposite behavior reported for
the case of N = 0.8 was observed. In fact, the profiles
of U , θ and C at the hot wall decreased while the profiles
of V increased as the enclosure inclination angle was
increased. The behaviors of U , θ and C were in contrast
with their counterparts for N = 0.8.

Furthermore, a resistive behavior of the flow with a
slight increase in both the temperature and concentration
due to the presence of the porous medium was clearly
predicted as Da∗ was increased. The behaviors of U
and V for this case were in contrast with their counter-
parts for N = 0.8. Also, as opposed to the case of
N = 0.8, no oscillatory behavior in the profile of U is
predicted for Da∗ = 0.

The effects of the enclosure inclination angle α and
the inverse Darcy number Da∗ on the average Nusselt
number Nu and the average Sherwood number Sh for a
buoyancy ratio N = 0.8 are presented in figures 9 and 10,
respectively. It is observed that both of Nu and Sh have
a decreasing trend with increases in Da∗. In addition,
tilting the enclosure has the tendency to decrease the
temperature and concentration gradients at the hot wall
resulting in reductions in both Nu and Sh as clearly shown
in figures 9 and 10.

A similar set of results for Nu and Sh as those reported
in figures 9 and 10 are illustrated in figures 11 and 12 for
N = 1.3. In these figures, it is interesting to observe that
tilting the enclosure produces the opposite behavior as
compared with those corresponding to N = 0.8. Namely,
Nu and Sh tend to increase as α increases for N = 1.3.

Figures 13 and 14 illustrate the influence of the buoy-
ancy ratio N on the average Nusselt and Sherwood num-
bers for various values of Da∗. An interesting behavior
in both of these figures is predicted in which Nu and Sh
are minimum for the critical buoyancy ratio of 1.2. This
is true regardless of the value of the inverse Darcy num-
ber.
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Figure 7. Steady thermal-dominated solution for Le = 2.0, N = 0.8, Pr = 1.0, RaT = 105, and α = 30◦.
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Figure 8. Steady thermal-dominated solution for Le = 2.0, N = 1.3, Pr = 1.0, RaT = 105, and α = 30◦.
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Figure 9. Average Nusselt number versus inverse Darcy num-
ber for different enclosure angles.

Figure 10. Average Sherwood number versus inverse Darcy
number for different enclosure angles.

Finally, figure 15 presents the effects of the presence
of the porous medium on the transient oscillatory behav-
ior |ψmax| and |ψmin| reported before for N = 1.0 in fig-
ure 3. By comparison with figure 3, it is observed that
the presence of the porous medium decays the oscillatory
behavior in |ψmax| and |ψmin| as time progresses.

Figure 11. Average Nusselt number versus inverse Darcy
number for different enclosure angles.

Figure 12. Average Sherwood number versus inverse Darcy
number for different enclosure angles.

7. CONCLUSIONS

The problem of double-diffusive convective flow of
a binary mixture inside an inclined rectangular porous
enclosure was studied numerically. The finite-difference
method was employed for the solution of the present
problem. Comparisons with previously published work
on special cases of the problem were performed and
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Figure 13. Average Nusselt number versus buoyancy ratio for
different inverse Darcy numbers.

Figure 14. Average Sherwood number versus buoyancy ratio
for different inverse Darcy numbers.

found to be in good agreement. Graphical results for var-
ious parametric conditions were presented and discussed.
It was found that the heat and mass transfer mechanisms
and the flow characteristics inside the tilted enclosure de-
pended strongly on the inverse Darcy number and the in-
clination angle. The effect of the presence of the porous
medium was found to reduce the heat transfer and the
fluid circulation within the enclosure. In addition, it was

Figure 15. Decay of oscillatory behaviour of |ψmin| and |ψmax|
with time for Da∗ = 500, Le = 2.0, N = 1.0, Pr = 1.0, RaT = 105,
and α = 0◦.

concluded that there was a critical buoyancy ratio close
to 1.2 for which both the average Nusselt and Sherwood
numbers were minimum for any value of the inverse
Darcy number. The effect of increasing the enclosure in-
clination angle was found to decrease the average Nusselt
and Sherwood numbers for the thermal-buoyancy domi-
nated regime and to increase them for the compositional-
buoyancy dominated regime.
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